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Finite-dimensional wave turbulence refers to the chaotic dynamics of interacting wave “clusters” consisting
of finite number of connected wave triads with exact three-wave resonances. We examine this phenomenon
using the example of atmospheric planetary �Rossby� waves. It is shown that the dynamics of the clusters is
determined by the types of connections between neighboring triads within a cluster; these correspond to
substantially different scenarios of energy flux between different triads. All the possible cases of the energy
cascade termination are classified. Free and forced chaotic dynamics in the clusters are investigated: due to the
huge fluctuations of the energy exchange between resonant triads these two types of evolution have a lot in
common. It is confirmed that finite-dimensional wave turbulence in finite wave systems is fundamentally
different from kinetic wave turbulence in infinite systems; the latter is described by wave-kinetic equations that
account for interactions with overlapping quasiresonances of finite amplitude waves. The present results are
directly applicable to finite-dimensional wave turbulence in any wave system in finite domains with three-
mode interactions as encountered in hydrodynamics, astronomy, plasma physics, chemistry, medicine, etc.
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I. INTRODUCTION

A. Weak-wave turbulence in finite-size systems

“Wave turbulence” refers to the chaotic dynamics of non-
linearly coupled oscillatory modes �1–5�. The phenomenon
appears in a variety of physical context from surface water
waves, through atmospheric planetary waves, plasma waves,
acoustic waves in solids and fluids etc. Depending on the
strength of nonlinear interaction one distinguishes weak-
wave turbulence from strong-wave turbulence. Weak-wave
turbulence is characterized by a smallness parameter � which
is roughly the root-mean square of the ratio of the nonlinear
to the linear term in the equation of motion. For surface
waves � is about the ratio of the wave amplitude to the wave-
length �, for sound in continues media this is the ratio of the
density variations to the mean density, etc.

The theory of weak-wave turbulence is particularly well
developed in the limit of infinite systems where the ratio of
the system size L to the characteristic wavelength � is very
large, L /�→�. In that limit the observed energy spectrum
�energy distribution between modes� is well described by the
so called “wave-kinetic equations” that received considerable
attention in the last half century, see, e.g., �1–9�. We will call
this regime of weak wave turbulence “kinetic wave turbu-
lence” to distinguish it from other regimes, “finite-
dimensional wave turbulence” and “mesoscopic wave turbu-
lence” that will be introduced later.

Notice that when the parameter L /� is of the order of
unity the dynamics of waves can be very well described by
low-dimensional chaotic models of the type studied inten-
sively in recent decades, see e.g., �10–13�. In this paper we
explore the nonlinear dynamics of weakly interacting waves
when the parameter L /� is neither of order unity nor very
large. This regime of parameters cannot be described either
by kinetic equations or as low-dimensional chaos; it calls for

new approaches and novel concepts, as partially demon-
strated in this paper.

To clarify the possible new regimes of weak-wave turbu-
lence in various finite-domain systems we consider the gen-
eral mathematical framework that takes the form of an en-
ergy conserving partial differential nonlinear equation for a
field ��r , t�. In a finite domain S one expands ��r , t� in a
complete set of eigenfunctions � j�r� of the linearized dy-
namics that satisfy the boundary condition on the boundary
�S,

��r,t� = �
j

Aj�t�� j�r� , �1�

where in general j can be a multiple index and the ampli-
tudes Aj�t� are functions of time but not of space. Accord-
ingly the dynamics can be represented by a set of ordinary
differential equations for the vector of amplitudes A�t�
= �Aj�t��, of the form

dAj�t�
dt

= i� jAj�t� + NLj�A� , �2�

where � j is the �real� eigenfrequency of the jth mode; The
symbolic term NL stands for the nonlinear contributions in
this equation. According to the Poincaré and Poincaré-Dulac
theorems �14� the nonlinear contributions can be brought to a
normal form by a nonlinear change of variables. The nonlin-
ear monomials that survive the change of variable are the
resonant ones. The n-tuple ��1 , . . .�n� of eigenfrequencies is
said to be resonant if there exists a relation of the form

� j = m1�1 + m2�2 + . . . mn�n. �3�

The order of the resonance is �kmk. The resonant monomials
are of the form A1

m1 . . .An
mn.

For the case of weak nonlinearities we invoke the small-
ness parameter ��1 to discard all the higher order reso-
nances, keeping only the lowest available order. In the atmo-
sphere the condition ��1 is applicable when the pressure*victor.lvov@weizmann.ac.il
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variation due to Rossby waves is much smaller than the
mean pressure. When this condition is applicable, and there
exist solutions to the equation

� j = �m + �n, �4a�

we keep only the resulting quadratic monomials which are
also known as “three-wave interactions,” which satisfy the
conservation law �4a�. For example, in space-homogeneous,
scale-invariant, isotropic, infinite wave systems, in which the
dependence of the wave frequency ��k� on the wave vector
k�	k	, ��k�	k
, the three wave resonances

��k1� + ��k2� = ��	k1 + k2	� , �4b�

are allowed if 
�1 �5�. For 
�1 Eq. �4b� has no solutions
and one needs to account for higher order resonances.

In this paper we focus on problems for which Eq. �4a� has
solutions, determining the leading nonlinearity. We note that
as the ratio L /� increases, there may be more and more
eigenfrequencies that satisfy Eq. �4a�. In particular, while at
small values of L /� we can expect only isolated resonant
triads of waves, for larger values of L /� triads can share a
common mode and the number of coupled resonant triads
increases considerably, finally forming infinite clusters of
connected triads. Analysis of the ensuing dynamics under the
influence of such growing clusters is the main subject of the
present paper. We will focus here on the case of small
enough nonlinearity parameter � to ensure that only waves
with exact resonances are important. In this case one can
consider only clusters of connected resonant triads of inter-
acting waves. We will refer to the chaotic dynamics of inter-
acting waves in this regime as “finite-dimensional wave tur-
bulence,” to stress the importance of the finite number of
interacting modes with exact wave resonances. With increas-
ing of wave amplitudes one has to account also for qua-
siresonances. This type of wave turbulence was called “dis-
crete wave turbulence” �15�. In contrast, in infinite systems,
the resonance conditions �e.g., Eq. �4b�� has infinitely many
solutions; then usually the �kinetic� wave turbulence can be
described by wave-kinetic equations. A more detailed analy-
sis �16� shows that in the plane �L /� ,�� there exists a region
of parameters where there exists weak-wave turbulence
whose properties are intermediate between finite-
dimensional and kinetic regimes. Some features of this type
of turbulence, called “mesoscopic wave turbulence,” were
observed, for example, in �8,17�.

To study finite-dimensional wave turbulence we focus
here for concreteness on the example of the barotropic vor-
ticity equation on a sphere; this is an idealized model for
atmospheric planetary �Rossby� waves �11,18�, shortly de-
scribed in Sec. II. Planetary-scale motions in the ocean and
atmosphere are due to the shape and rotation of the Earth,
and play a crucial role in weather and climate predictability
�18�. Oceanic planetary waves influence the general large-
scale ocean circulation, can intensify the currents such as the
Gulf Stream, as well as push them off their usual course. For
example, a planetary wave can push the Kuroshio Current
northwards and affect the weather in North America �19�.
Atmospheric planetary waves detach the masses of cold or
warm air that become cyclones and anticyclones and are re-

sponsible for day-to-day weather patterns at midlatitudes
�20�.

Recently a new model �12� was developed for the in-
traseasonal oscillations in the Earth atmosphere, in terms of
triads of planetary waves whose eigenfrequencies solve Eq.
�4a�. The study of the complete cluster structure in various
spectral domains shows that both for atmospheric �21� and
oceanic �22� planetary waves indeed the size of the clusters
increases with the growth of the spectral domain. In large
clusters one finds both large and small wavenumbers, mean-
ing that the energy flux between very different scales be-
comes possible, bringing with it the hallmark of turbulence.
Nevertheless, both numerical simulations �17,23� and labo-
ratory experiments �24� indicate that the dynamics of wave
systems with intermediate value of L /� do not obey the sta-
tistical description provided by wave-kinetic equations. This
domain calls for a specialized investigation which is initiated
in this paper.

B. Structure of this paper

Section II reviews the properties of atmospheric planetary
waves which are important for our analysis: in Sec. II A we
consider barotropic vorticity Eq. �5� on a sphere and its dy-
namical invariants �Eq. �6��; in Sec. II B we project Eqs. �5�
and �6� on the spherical basis; and in Sec. II C we analyze
the properties of the resulting interaction coefficients.

In Sections III and IV we study the topology and other
properties of finite size clusters of resonant triads of plan-
etary waves that influence the dynamics of finite-dimensional
wave turbulence. In Sec. III we begin with small clusters of
resonant triads. In Sec. III A we overview equation of mo-
tion �14� for isolated resonant triad and its dynamical invari-
ants �Eq. �15��, present them in the Hamiltonian form �20�,
and use the notion of “active” and “passive” modes �13�
denoted as A and P modes; these notions are crucial for our
theory. In Sec. III B we move on to double-triad clusters, PP,
PA, and AA butterflies, their Hamiltonian equation of motion
�25�, Hamiltonian �26� and Manley-Rowe dynamical invari-
ants �Eq. �27��. Similar discussion for the triple-triad clus-
ters, stars, chains, and triangles, is given in Sec. III C. Spe-
cific for atmospheric planetary waves, six-triad cluster,
caterpillar, is presented in Sec. III D as an example of a
more complicated cluster structure.

In Sec. IV we study clusters of atmospheric planetary
waves in a large spectral domain � , 	m	1000, presenting in
Sec. IV A the total number of clusters consisting of one, two,
three, etc. triads with different topologies. The histogram of
all cluster distributions with respect to the triad number in
clusters, ranging from 1 to 3691 is also presented. In Sec.
IV B we use a notion of PP-irreducible clusters �13� �impor-
tant for the discussion of the energy flux in finite-
dimensional wave turbulence� and show the histogram of
their distribution in size, ranging from 1 to 130 triads in the
PP-irreducible clusters.

Sections V and VI are devoted to numerical simulation
and preliminary analytical studies of finite-dimensional wave
turbulence in clusters typical for numerous physical systems
including the planetary waves described in Secs. III and IV.
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In Sec. V we begin with the analysis of free evolution in
small clusters: butterflies in Sec. V B and triple-triad clusters
�stars and triple chains� in Sec. V C. The main questions, that
we discuss in this section are:

�i� reasonable choice of initial conditions, interaction co-
efficients and data representation that allows to shed light on
the typical features of finite-dimensional wave turbulence,
that depend on many parameters;

�ii� how the energy flux between triads depends on the
type of connections, on the interaction coefficients, on the
initial conditions and on the cluster topology.

In Sec. VI we study finite-dimensional wave turbulence
with a constant energy flux in the long-chain clusters, con-
sisting of a large number of triads �N�1�. For this goal we
introduce pumping of energy into the leading �first� triad and
damping in the driven �last� triad. We discuss in Sec. VI A
how to mimic the energy pumping and energy damping in
our particular problem and what are the necessary conditions
of stationarity, Sec. VI B. In Sec. VI C we show that the
distribution of mode amplitudes in long chains is universal in
the following sense: it is asymptotically independent of num-
ber of triads in the chain in the limit of large N and of
interaction coefficients �in a wide region of their definition�.
Moreover, the distribution for the forced case practically co-
incides with that for free evolution from initial conditions,
corresponding to the forced stationary case.

In Sec. VII A we briefly summarize the main features of
finite-dimensional wave turbulence discovered in this paper
and formulate in Sec. VII B some important questions in this
field that remain unstudied. Our feeling is that the present
paper presents many more questions than answers, and all
these questions �and many other related ones� belong to a
new field of study of weak-wave turbulence: finite-
dimensional and mesoscopic wave turbulence in finite-size
physical systems.

II. ATMOSPHERIC PLANETARY WAVES

A. Barotropic vorticity equation on a sphere

Planetary waves in the atmosphere pose a rich and com-
plicated problem which is influenced by the earth topogra-
phy, the vertical temperature profiles �varying between land
and ocean�, global winds etc. We do not attempt here to take
into account all this richness. The essence of the interesting
dynamics can be gleaned from simplified models. A very
simplified model of atmospheric planetary waves �discussed
in pioneering works by Silberman �4,11� and by Reznik,
Piterbarg, and Kartashova �11�� is provided by the barotropic
vorticity equation on a rotating sphere for the dimensionless
stream function ��� ,� , t�. The variables t, �, and � are the
time, the latitude �−� /2�� /2� and longitude �0�
2�� on the sphere. The equation reads �4,11�

�
��

�t
=

1

sin �

 ��

��

�

��
−

��

��

�

��
��2� cos � + ��� ,

� =
1

sin �
� �

��

sin �

�

��
� +

1

sin �

�2

��2 , �5�

where � is the angular part of the spherical Laplacian opera-
tor. The stream function gives rise to the velocity v=�R�z

����, where � and R are the angular velocity and radius of
the Earth and z is the vertical unit vector.

Equation �5� conserves the energy E and the enstrophy H,
which are defined by �11�:

E =
1

2
�

0

2�

d��
0

�

	��	2sin �d� , �6a�

H =
1

2
�

0

2�

d��
0

�

	��	2sin �d� . �6b�

B. Projection on the spherical basis

The eigenfunctions of the linear part of Eq. �5� are

� j � ��j

mj��,�,t� = Y j��,��exp�i� jt� , �7a�

where the frequencies of planetary waves are

� j � ��� j,mj� = − 2mj�/� j�� j + 1� . �7b�

From now on we use the shorthand notation j= �� j ,mj� for
the eigennumbers � j ,mj of the spherical harmonic Y�j

mj�� ,��

Y j � Y�j

mj��,�� = P�j

mj�cos ��exp�imj�� , �7c�

with the associated Legendre polynomials Pj � P�j

mj�cos ��,
normalized as follows:

�
0

�

P�
mP��

m sin �d� = ���,���, P�
−m = P�

m. �7d�

Here ��� ,��� is the Kronecker symbol �1 for �=�� and zero
otherwise�. The integer indices m and ��−m� are the longi-
tudinal and latitudinal wave numbers of the � ,m mode; they
count the number of zeros of the spherical function along the
longitudinal and the latitudinal directions. Below we refer to
the range of m and � as the “spectral domain.” For the ap-
proximation of two-dimensional atmosphere to hold, the
wavelength is supposed to be much smaller than the atmo-
sphere’s height. If we estimate the wavelength as the distance
between the appropriate zeroes of spherical function, the
length of the equator at about 40 000 km and the height of
the atmosphere at about 40 km, we understand that the ap-
proximation of a two-dimensional atmosphere holds up to
��1000.

Expanding the function ��� ,� , t� in the basis �7a� we get

���,�,t� = �
j

Aj� j . �7e�

Substituting in Eq. �5� one obtains the governing equa-
tions for the “slow” amplitudes Aj �A�j

mj�t� of the planetary
waves,

dAj

dt
=

i

2Nj
�
r,s

Nr,sZj	r,sArAs � exp�i��r + �s − � j�t���mj,mr

+ ms� , �8a�

Nj � � j�� j + 1�, Nr,s � Nr − Ns, �8b�

where the three-wave interaction coefficients are �4,11�
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Zj	r,s � Z�j

mj	�r,�s

mr,ms = �
0

�

Z j	r,s���d� , �9a�

with the “interaction integrand”

Z j	r,s��� = P�j

mj�mrP�r

mr
dP�s

ms

d�
− msP�s

ms
dP�r

mr

d�
 . �9b�

We note that Eq. �8� is an exact consequence of the barotro-
pic vorticity equation, without any assumption about the ex-
istence of a small parameter. Among the interactions appear-
ing in this equations there are many nonresonant ones, in
which the exponent exp�i��r+�s−� j�t� is not unity. All
these interactions can be removed by a change of variables,
which however will result in new nonlinear terms �higher
than quadratic�, see, e.g., Sec. 1.1.4 in �5�. Assuming that the
wave amplitudes are small enough, all these can be disre-
garded, bringing the final equations back to the same form as
in Eq. �8�, but including only resonant triads for which
exp�i��r+�s−� j�t�=1.

C. Necessary conditions for nonvanishing interaction

The first necessary condition that guarantees finite inter-
action amplitudes follows from the axial symmetry of the
problem and is reflected in the Kronecker symbol in Eq. �8a�,

mj = mr + ms. �10a�

Second, the spherical symmetry of the nonlinear term in Eq.
�5� leads to the conservation of the square of the total angular
momentum of the system. This translates to the triangle in-
equality for vectors � j =�r+�s in each triangle with nonzero
interaction amplitude,

	�r − �s	 � � j � �r + �s. �10b�

Third, the explicit form of Eq. �9a� requires that

� j + �r + �s is odd. �10c�

Otherwise integrand �9b� is odd function of cos � and inte-
gral �9a� is zero.

It can be shown by integrating Eq. �9� by parts that when-
ever Eq. �10a� is fulfilled the three interaction coefficients
satisfy

Z�j

mj	�r,�s

mr,ms = Z�s

ms	�r,�j

−mr,mj = Z�r

mr	�j,�s

mj,−ms. �11�

From this follows that the interaction coefficients Z. . . satisfy
two Jacoby identities

Zj	r,s + Zr	s,j + Zs	j,r = 0,

NjZj	r,s + NrZr	s,j + NsZs	j,r = 0. �12�

As a result, Eqs. �8� have two integrals of motion

E =
1

2�
j

Nj	Aj	2, �13a�

H =
1

2�
j

Nj
2	Aj	2, �13b�

which are nothing else but the energy �Eq. �6a�� and enstro-
phy �Eq. �6b��, presented in the basis �7�.

III. SMALL CLUSTERS OF RESONANT TRIADS

In this section we formulate equations of motion and mo-
tion invariants of small clusters of resonant triads, study their
topology and other properties, that affect on the dynamics of
finite-dimensional wave turbulence. Brief analysis of these
questions was given in Ref. �13�.

A. Active and passive modes in a resonant triad

In this paper we refer to a “resonant triad” whenever we
have three modes �j ,r ,s� whose frequencies satisfy the triad
resonance condition � j =�r+�s. Accordingly, the equations
for the slow amplitudes of modes in resonant triads are writ-
ten, �after relabeling according to r→1, s→2 and j→3� as
follows:

N1
dA1

dt
= iN3,2ZA2

�A3, Z � Z3	1,2,

N2
dA2

dt
= iN1,3ZA1

�A3,

N3
dA3

�

dt
= iN2,1ZA1

�A2
�. �14�

In this case the conservation laws �13� take the form

E =
1

2
�N1	A1	2 + N2	A2	2 + N3	A3	2� , �15a�

H =
1

2
�N1

2	A1	2 + N2
2	A2	2 + N3

2	A3	2� . �15b�

Taking for concreteness an example for which

�1 � �3 � �2, �16�

we make in Eqs. �14� a linear change of variables Bi=
iAi
such that


1 = − i�N1,2N1,3/�N2N3,


2 = i�N1,2N3,2/�N1N3,


3 = i�N1,3N3,2/�N1N2. �17�

This results in equations with real coefficients that involve
only one interaction amplitude Z,
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dB1

dt
= ZB2

�B3,

dB2

dt
= ZB1

�B3,

dB3

dt
= − ZB1B2. �18�

This is a dynamical system corresponding to the simplest
possible resonant cluster. Equations �18� are symmetric with
respect to replacing two low-frequency modes 1⇔2. The
mode with highest frequency �which in this paper will be
always denoted by subscript “ 3“� is special. When Eq. �16�
does not hold one can find a similar change of variable for
any relations between the magnitudes of the three indices � j.

The system �18� has two independent conservation laws
�known as Manley-Rowe integrals�

�I23 = 	B2	2 + 	B3	2 = �EN1 − H�N23/N1N2N3,

I13 = 	B1	2 + 	B3	2 = �EN2 − H�N13/N1N2N3,

I12 = I13 − I23 = 	B1	2 − 	B2	2,
� �19�

which are linear combinations of the energy E and enstrophy
H defined by Eqs. �15�.

Obviously, Eq. �18� can be written in the Hamiltonian
form

i
dBj

dt
=

dHint

dBj
� , �20a�

with the interaction Hamiltonian

Hint = iZ�B1B2B3
� − B1

�B2
�B3� , �20b�

which is an additional integral of motion. In terms of old
variables Aj

Hint = iZ
N1,2N1,3N3,2

N1N2N3
�A1A2A3

� − A1
�A2

�A3� . �20c�

By direct calculation it is easy to check that Eq. �20c� is an
integral of motion of the dynamical system Eq. �14�.

On the face of it Eqs. �18� involves six dynamical vari-
ables: i.e., B’s and their complex conjugates. In fact, using
the standard representation of the complex amplitudes Bj in
terms of real amplitudes Cj and phases � j,

Bj = Cj exp�i� j� , �21a�

one recognizes that the right-hand side �RHS� of Eq. �18�
depends only on a single combination of phases in the triad
which affects the dynamics. We refer to this combination as
the triad phase,

� � �1 + �2 − �3. �21b�

The triad phase appears in Eq. �20b� as follows:

Hint = − 2Z	B1B2B3	sin � . �22�

Thus we have a four-dimensional phase space with three
integrals of motion, resulting in a simple periodic trajectory

for almost all conditions. For more details see �12�. Never-
theless even this simple dynamics offers the first opportunity
to discuss the energy flow within a cluster of interacting
modes.

To this aim we discuss the evolution of the triad of am-
plitudes with special initial conditions, when only one mode
is appreciably excited at zero time. If B1�t=0��B2�t=0� and
B1�t=0��B3�t=0�, then I23�t=0�� I13�t=0�. The integrals of
motion are independent of time, therefore I13� I23 at all later
times, and hence 	B1�t�	2� 	B2�t�	2. Moreover, 	B1�t�	2
� 	B3�t�	2 at all times. Indeed, the assumption 	B1�t�	2
� 	B3�t�	2 yields I13� I23, which is not tenable. This means
that the �1 mode, being the only essentially exited one at t
=0 cannot redistribute its energy to the other two modes in
the triad. The same is true for the �2 mode. For this reason
we refer to the lower frequency modes with frequencies �1
��3 and �2��3 “passive modes,” or P modes.

On the other hand, the conservation laws �19� cannot re-
strict the growing of P-modes from initial conditions when
only �3-mode is appreciably excited. In this case the P-mode
amplitudes will grow exponentially �25�: 	B1�t�	 , 	B2�t�	
	exp�	ZB3�t=0�	t� until all the modes will have comparable
magnitudes of their amplitudes. Therefore we refer to the
�3-mode as an “active mode,” or A mode. An A mode, being
initially excited, is capable of shearing its energy with two P
modes within the triad.

B. Double-triad clusters: Butterflies

An arbitrary cluster in our wave system is a set of con-
nected triads. Examples of the simplest clusters, consisting
of two triads connected via one common mode are shown in
Fig. 2. They will be referred to as butterflies. Note that in
principle, for another dispersion law, one could have two
triads connected by two modes. Such a structure does not
exist for the dispersion law of Rossby waves and will not be
discussed here.

The dynamics of a cluster depends on the type of the
mode which is common for the neighboring triads. Corre-
spondingly we can distinguish three types of butterflies: PP,
AP and AA butterflies, In this section we consider the equa-
tions of motion, the invariants and the restrictions on dy-

9,13

4,12 5,14

P P

A

1 2

3 1 2= +

FIG. 1. �Color online� Resonant triad �1, see Table I below.
Wave numbers of modes m, � are shown inside ovals. Red arrows
are coming from an active mode A �with frequency �3=�1+�2�
and show directions of the energy flux to the passive P-modes �with
frequencies �1 and �2�.
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namical behavior, that follow from the existence of invari-
ants for relatively small clusters consisting of two triads. In
the following sections we consider these questions for clus-
ters consisting of three and six triads.

Butterflies, as shown in Fig. 2, consist of two triads a and
b, with wave amplitudes Bj	a, Bj	b, j=1,2 ,3, connected via
one common mode. For PP butterfly the common mode is
passive in both triads, say

B1	a = B1	b PP-butterfly; �23a�

for an PA-butterfly the common mode is passive in a triad
and active in the second, b triad,

B1	a = B3	b PA-butterfly; �23b�

while for an AA butterfly the common mode is active in both
triads,

B3	a = B3	b AA-butterfly. �23c�

The equations of motion for these systems follow from
the Eqs. �8� under the condition of small nonlinearity and
from the resonance conditions in both triads,

�1	a + �2	a = �3	a, �1	b + �2	b = �3	b, �24�

with the obvious requirement that the frequencies of the
common modes are the same. After a change of variables
similar to Eqs. �17� and elimination of one common mode,
the resulting equations for PP butterfly �B1	a=B1	b� are

�Ḃ1	a = ZaB2	a
� B3	a + ZbB2	b

� B3	b, ,

Ḃ2	a = ZaB1	a
� B3	a, Ḃ2	b = ZbB1	a

� B3	b,

Ḃ3	a = − ZaB1	aB2	a, Ḃ3	b = − ZbB1	aB2	b.
� �25a�

For PA butterfly �with B1	a=B3	b� they are

�Ḃ1	b = ZbB2	b
� B3	b, Ḃ3	a = − ZaB3	bB2	a,

Ḃ2	b = ZbB1	b
� B3	b, Ḃ2	a = ZaB3	b

� B3	a,

Ḃ3	b = − ZbB1	bB2	b + ZaB2	a
� B3	a,

� �25b�

and for AA butterfly �with B3	a=B3	b�,

�Ḃ1	a = ZaB2	a
� B3	a, Ḃ1	b = + ZbB2	b

� B3	a,

Ḃ2	a = ZaB1	a
� B3	a, Ḃ2	b = ZbB1	b

� B3	a,

Ḃ3	a = − ZaB1	aB2	a − ZbB1	bB2	b.
� �25c�

All these equations can be obtained from the canonical
equations of motion �20a� using the Hamiltonian

Hint = 2 Im�ZaB1	a
� B2	a

� B3	a + ZbB1	b
� B2	b

� B3	b� , �26�

in which the conditions �23� have to be fulfilled for each
particular butterfly.

In addition to the Hamiltonian �26� we have three more
invariants of the Manley-Rowe type for each butterfly. For
the PP, PA, and AA butterflies they, respectively, are

I2,3	a = 	B2	a	2 + 	B3	a	2, I2,3	b = 	B2	b	2 + 	B3	b	2, �27a�

I	a,b = 	B1	a	2 + 	B3	a	2 + 	B3	b	2, PP;

I1,2	b = 	B1	b	2 − 	B2	b	2, I2,3	a = 	B2	a	2 + 	B3	a	2, �27b�

I	a,b = 	B1	b	2 + 	B3	b	2 + 	B3	a	2, PA;

I1,2	a = 	B1	a	2 − 	B2	a	2, I1,2	b = 	B1	b	2 − 	B2	b	2, �27c�

I	a,b = 	B1	a	2 + 	B1	b	2 + 	B3	a	2, AA.

The first two invariants for the PP butterfly, I2,3	a and I2,3	b,
do not involve the common mode B1	a=B1	b, and are similar
to the invariant I23, Eq. �19�, for an isolated triad. We can
make the following observation: if at t=0 the amplitudes in
one triad exceed substantially the two remaining amplitudes
of the butterfly, that is 	B1	a	 , 	B2	a	 , 	B3	a	� 	B2	b	 , 	B3	b	, this
relation persists. In other words, in PP butterfly when any of
the two triads, a or b, has initially very small amplitudes, it is
unable to absorb the energy from the second triad during the
nonlinear evolution.

The invariants I1,2	b and I2,3	a for the PA butterfly do not
involve the common mode B3	b=B1	a ; they are similar to the
corresponding integrals I12 and I23, Eqs. �19�, for an isolated
triad. If at t=0 the b triad is excited much more than the a
triad �and thus I1,2	b� I2,3	a� the smallness of the positively

2,6

5,7

3,8

6,9

4,14

PPa b

B0

B0
~

13,19

6,18

7,20

2,15

5,24

APa b

B0

B0
~ 29,376

85,187

114,208

9,116

105,231

A Aa b

B0

B0
~

(b)(a) (c)

FIG. 2. �Color online� Examples of isolated butterflies. All the notations are as in Fig. 1. In particular: red arrows are coming from the
active modes A and show directions of the energy flux to the passive P-modes. The letters “a” and “b” in square boxes denote triads and will
be used as subscripts in the corresponding evolution equations for amplitudes and for integrals of motion. In studies of free evolution in Sec.

V the initial energy is concentrated in the “leading” a triad in “individual” modes with amplitudes B0 and B̃0 and then goes to the “driven”
b triad.
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defined invariant I2,3	a prevents the a-triad from absorbing
energy from b-triad during the time evolution. The situation
is different when the a triad is initially excited and I2,3	a
� I1,2	b. In this case the initial energy of a triad can be easily
shared with b triad. The smallness of I1,2	b only requires that
during evolution 	B1	b	�	B2	b	. Under this type of the initial
conditions we will call the a triad “leading” triad, while the b
triad will be referred to as “driven” triad.

Finally, the invariants for the AA butterfly, I1,2	a and I1,2	b,
do not involve the common mode B3	a=B1	b and are similar
to I12, Eqs. �19�, for isolated triad. Simple analysis of these
integrals of motion shows that energy, initially held in one of
the triads will be shared between both triads dynamically.

The conclusion that we can draw from these examples is
general: any triad which is connected to any given cluster of
any size whatsoever where the connection occurs via its pas-
sive mode cannot absorb the energy from the cluster, if ini-
tially the triad is not excited. In contrast, a triad connected to
a cluster of any given size via an active mode can freely
adsorb energy from the cluster during the nonlinear evolu-
tion.

C. Triple-triad clusters: stars, chains, and triangles

Triple triad clusters consist of three triads, denoted as a,
b, and c triads with the mode amplitudes denoted as Bj	a, Bj	b,
Bj	c, j=1,2 ,3. There are three topologically different types
of triple-triad clusters: with one common mode—stars,
shown in Fig. 3; with two common modes—chains, and with
three common modes—triangles, these clusters are shown in
Fig. 4. Having in mind different types of common modes one
distinguishes 13 types of triple-triad clusters, including four
stars �AAA, AAP, APP, PPP stars, Fig. 3�, seven types of
three-chain, and two types of triangle clusters, in Fig. 4. All
motion equations can be written in the canonical form �20a�
with the Hamiltonian

Hint = 2 Im�ZaB1	a
� B2	a

� B3	a + ZbB1	b
� B2	b

� B3	b + ZcB1	c
� B2	c

� B3	c� ,

�28�

in which one has to equate amplitudes of common modes.
�a� Stars have one common mode in three triads. For ex-

ample, taking B3	a=B3	b=B3	c in Eq. �28� one gets from Eq.
�20� equations of motion for AAA-stars,

435,464

18,186

417,527

345,527 90,340

225,399

210,588

A A

A

a b

c

271,812

125,720

146,927

541,811 270,810

126,783

145,840

P

A A

a

c

b

231,902

385,737

154,602

226,903 5,860

22,615

253,860

P P

A

a

c

b

303,909238,713
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FIG. 3. �Color online� Examples of isolated triple stars in the spectral domain m�1000. The letters “a,” “b,” and “c” in square boxes
denote triads and will be used as subscripts in the corresponding evolution equations for amplitudes and for integrals of motion. All other
notations as in Fig. 1 and 2.
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�
Ḃ1	a = ZaB2	aB3	a, Ḃ2	a = ZaB1	aB3	a,

Ḃ1	b = ZbB2	bB3	a, Ḃ2	b = ZaB1	bB3	a,

Ḃ1	c = ZcB2	cB3	a, Ḃ2	c = ZcB1	cB3	a,

Ḃ3	a = − ZaB1	aB2	a − ZbB1	bB2	b − ZcB1	cB2	c.
�

�29a�

Taking B3	a=B3	b=B1	c one gets for AAP stars,

�
Ḃ1	a = ZaB2	aB3	a, Ḃ2	a = ZaB1	aB3	a,

Ḃ1	b = ZbB2	bB3	a, Ḃ2	b = ZaB1	bB3	a,

Ḃ3	c = − ZcB3	aB2	c, Ḃ2	c = ZcB3	aB3	c,

Ḃ3	a = − ZaB1	aB2	a − ZbB1	bB2	b + ZcB2	cB3	c.
�

�29b�

Similarly one gets motion equations for

PPA-star: B1	a = B1	b = B3	c,

�
Ḃ3	a = − ZaB1	aB2	a, Ḃ2	a = ZaB1	aB3	a,

Ḃ3	b = − ZbB1	aB2	b, Ḃ2	b = ZaB1	aB3	b,

Ḃ1	c = ZcB2	c
� B1	a, Ḃ2	c = ZcB1	aB1	c,

Ḃ1	a = ZaB2	a
� B3	a + ZbB2	b

� B3	b − ZcB1	cB2	c.
� �29c�

PPP-star: B1	a = B1	b = B1	c,

�
Ḃ3	a = − ZaB1	aB2	a, Ḃ2	a = ZaB1	aB3	a,

Ḃ3	b = − ZbB1	aB2	b, Ḃ2	b = ZaB1	aB3	b,

Ḃ3	c = − ZcB1	aB2	c, Ḃ2	c = ZcB1	aB3	c,

Ḃ1	a = ZaB2	a
� B3	a + ZbB2	b

� B3	b + ZcB2	cB3	c.
� �29d�

In addition to Hamiltonian, all triple-star clusters have four
invariants of the Manley-Rowe type, three of them does not
involve the common mode. For example, for

�PPA-star: I1,2	a = 	B1	a	2 − 	B2	a	2,

I2,3	b = 	B2	b	2 + 	B3	b	2, I2,3	c = 	B2	c	2 + 	B3	c	2,

I	a,b,c = 	B1	a	2 + 	B3	a	2 + 	B3	b	2 + 	B3	c	2.
� �30�

Integrals I2,3	b and I2,3	c prevent b and c triads �connected via
the P mode� from adopting energy of initially excited a triad.
In cases when a b and/or a c triad are initially exited, the a
triad can freely share their energy via the connecting A
mode.

�b� Triple-chains have two common modes in two triads.
As we mentioned, there are seven types of triple chains, that
differ in type of connections, see Fig. 4. Similarly to the
triple-star clusters, one gets equation of motion for triple
chains from the canonical Eq. �20a� with the Hamiltonian
�28�, in which one has to equate two pairs of amplitudes of
common modes. For example, for PA-PA chain,

PA-PA-chain: B1	a = B3	b, B1	b = B3	c, �31a�
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FIG. 4. �Color online� In the spectral domain m�1000 there are 66 isolated triple-chain clusters of seven types �examples are shown
in panels A–F� and four triangle clusters with �AA-PA-PP� and �PA-PP-PP� connections �examples are shown in panels H and I��. Common
PP modes are split, denoting difficulty in the energy exchange between corresponding triads. Dashed lines separate PP-irreducible subclus-
ters, discussed in Sec. IV B.
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�
Ḃ1	a = ZaB2	a

� B3	a − ZbB1	bB2	b,

Ḃ2	a = ZaB1	a
� B3	a, Ḃ3	a = − ZaB1	aB2	a,

Ḃ2	b = ZbB1	b
� B3	b,

Ḃ1	b = ZbB2	b
� B3	b − ZaB1	cB2	c,

Ḃ1	c = ZcB2	c
� B1	b, Ḃ2	c = ZcB1	c

� B1	b.

� �31b�

Again, besides Hamiltonian, all triple-chain clusters have
four invariants of the Manley-Rowe type, two of them do not
involve the common mode. In particular, PA-PA chain, gov-
erned by Eq. �31a� has the following invariants:

�PA-PA chain: I	a,b = 	B1	a	2 − 	B2	a	2 + 	B2	b	2,

I	b,c = 	B1	b	2 − 	B2	b	2 + 	B2	c	2,

I2,3	a = 	B2	a	2 + 	B3	a	2, I1,2	c = 	B1	c	2 − 	B2	c	2.
�

�31c�

�c� Triple-triangles have three common modes in three
triads, see Figs. 4�H� and 4�I�. Correspondingly, equations of
motion for AA-PA-PP and PA-PP-PP triangles one gets from
the canonical Eq. �20a� with the Hamiltonian �28�, in which
one has to equate three pairs of amplitudes of common
modes. In particular, for AA-PA-PP triangle one has

B1	a = B1	b, B3	a = B3	c, B3	b = B1	c, �32a�

�
Ḃ1	a = ZaB2	a

� B3	a + ZbB2	b
� B3	b,

Ḃ2	a = ZaB1	a
� B3	a,

Ḃ3	a = − ZaB1	aB2	a − ZcB2	cB3	b,

Ḃ2	b = ZbB1	a
� B3	b,

Ḃ3	b = − ZbB1	aB2	b + ZcB2	c
� B3	a,

Ḃ2	c = ZcB3	b
� B3	a.

� �32b�

Triangle clusters have three Manley-Rowe invariants. In par-
ticular, AA-PA-PP triangle, governed by Eq. �32b� has the
following invariants:

�AA-PA-PP triangle: I	a,b = 	B2	b	2 − 	B1	a	2,

I	a,c = 	B2	a	2 + 	B3	a	2 + 	B2	c	2,

I	b,c = 	B2	b	2 − 	B3	b	2 − 	B2	c	2.
�

�32c�

Notice, that triple-stars and triple-chains have ten real
variables �seven amplitudes and three triad phases� and five
invariants �Hamiltonian and four Manley-Rowes’�, while
triple-triangles have only nine real variables �six amplitudes
and three triad phases� and four invariants �Hamiltonian and
three Manley-Rowes’�. Therefore, all triple-triad clusters
have five-dimensional effective phase space. Recall, that but-
terflies have three-dimensional phase space. Moreover, one
can prove that any n-triad cluster has �2n−1�-dimensional
effective phase space.

D. Caterpillar: six-triad cluster

The largest cluster found in the domain ��21 consists of
six resonant triads �11. . .�16 with three PP, one AP, and one
AA connection, see Fig. 5. The equation of motion for this
cluster, �called “caterpillar”� can be obtained from Hamil-
tonian, similar to Eq. �28�, but consisting of six terms

Hcat = 2 Im �
n=11

16

ZnB1	n
� B2	n

� B3	n, �33a�

in which we have to equate amplitudes of common modes:

�B1	11 = B1	12, B3	12 = B1	13, B2	12 = B1	14,

B3	14 = B3	15, B1	14 = B1	16. � �33b�

Due to these five connections one has only 3�6−5=13
complex equations for remaining amplitudes,

�
Ḃ1	11 = Z11B2	11

� B3	11 + Z12B2	12
� B3	12,

Ḃ2	11 = Z11B1	11
� B3	11, Ḃ3	11 = − Z11B1	11B2	11,

Ḃ2	12 = Z12B1	11
� B3	12 + Z14B1	14

� B3	14,

Ḃ3	12 = − Z12B1	12B2	12 + Z13B2	13
� B3	13

Ḃ1	14 = Z14B2	12
� B3	14 + Z16B2	16

� B3	16,

Ḃ3	14 = Z14B2	12
� B1	14 + Z16B2	16

� B3	16,

Ḃ1	15 = Z15B2	15
� B3	14, Ḃ2	15 = Z15B1	15

� B3	14,

Ḃ2	16 = Z16B1	14
� B3	16, Ḃ3	16 = − Z16B1	14B2	16.

�
�33c�

Caterpillar has six Manley-Rowe invariants:
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FIG. 5. �Color online� Triads belonging to caterpillar are drawn
by bold lines. New, connected to them triads, appearing in spectral
domain m ,�1000 are drawn by thin lines. The PP reduction of
the extended caterpillar to three triads ��11, �16 and �11.4, accord-
ing to Table I�, PA butterfly q12,13, AA butterfly q14,15, and AAA
star is shown by dashed lines. The rest of notations as in Figs. 1 and
4.

FINITE-DIMENSIONAL TURBULENCE OF PLANETARY WAVES PHYSICAL REVIEW E 80, 066319 �2009�

066319-9



�
I2,3	11 = 	B2	11	2 + 	B3	11	2,

I2,3	13 = 	B2	13	2 + 	B3	13	2,

I1,2	15 = 	B1	15	2 − 	B2	15	2,

I2,3	16 = 	B2	16	2 + 	B3	16	2,

I	11,12,13 = 	B1	11	2 + 	B3	11	2 + 	B3	12	2 + 	B3	13	2,

I	14,15,16 = 	B1	14	2 + 	B1	15	2 + 	B3	15	2 + 	B3	16	2.

�
�33d�

IV. HOW CLUSTERS ARE ORGANIZED

This section is devoted to the analysis of the structure of
clusters of resonant triads of atmospheric planetary waves
�based on the data set of the exact solutions of resonance
conditions � j =�r+�s with restrictions �Eq. �10��, provided
by Kartashova �26��. This analysis is important for the study
of finite-dimensional wave turbulence throughout the present
paper. A preliminary study of this issue can be found in Ref.
�13�.

A. “Meteorologically significant” clusters and their extension
in large spectral domain

Dealing with atmospheric waves one learns that the “me-
teorologically significant” wave numbers are believed to be
limited to ��21. Nevertheless, as explained above, the spec-
tral domain for the approximate two-dimensional atmosphere
extends to ��1000. Counting explicitly how many clusters
we have in this spectral domain we find that there exists
altogether 1965 isolated triads and 424 clusters consisting
from 2 to 3691 connected triads. Among them there are 234
butterflies, 95 triple-triad clusters, etc. �cf. the histogram in
Fig. 6�A��. For clarity of presentation we did not display in
this histogram the largest 3691 cluster, which we refer to as
the monster.

It can be seen that about 82.2% of all clusters are pre-
sented by isolated triads and their dynamics has been inves-
tigated in �12� in all details; the main findings are that the
energy oscillates between the three modes in the triads, with
a period of oscillation that is much larger then the wave
period. This period is inversely proportional to the root-
mean-square of the wave amplitude.

234 clusters in the spectral domain ��10.5%� are the but-
terflies discussed above; these are further analyzed below.
Among them there are 131 PP, 69 AP, and 35 AA butterflies.
The 95 triple-triad clusters include 25 “triple-star” clusters
with one triple connection, see Fig. 3. This set includes 3
AAA, 5 AAP, 6 APP, and 11 PPP stars. There are also 66
chain clusters with two pair connections and seven combina-
tions of the connection types, shown in Fig. 4. We found also
four �two pairs� triple-triad clusters with three pair connec-
tions, belonging to two different types, see Fig. 4.

Similar classification can be performed for all the other
clusters. For example, the monster includes one mode
�218 545�, participating in ten triads, three modes, participat-
ing in nine triads, five modes—in eight triads, 23—in seven,
50—in six, 90 in five, 236—in four, 550—in three and 1428

modes—in two triads �butterflies�. The analysis of their dy-
namical behavior depends crucially on the connection type
as shown above and detailed below.

B. PP reduction of larger clusters

Large clusters can be divided into “almost separated” sub-
clusters connected by PP-connections �e.g., Figs. 5, 7, and
8�. If such a subcluster cannot be divided further into smaller
clusters connected by PP connection we refer to it as a PP-
irreducible cluster. For example, the triangle cluster in Fig.
4�I� can be PP reduced to a triad and a PA-butterfly, while
clusters in Figs. 8�A� and 8�B� can be PP reduced to two and

(b)

(a)

FIG. 6. �Color online� Horizontal axes denote the number of
triads in the cluster while vertical axes show the number of corre-
sponding clusters �panel A� and PP irreducible subclusters �panel
B�.

PP P P P P

P

P

P

P

AAA A

A
8 7

7.1
7.2 7.3

FIG. 7. �Color online� Triads �7 and �8, that belong to PP
butterfly q7,8 are drawn by bold lines. New, connected to them
triads �7.1, �7.2, and �7.3, appearing in spectral domain m ,�
1000 �for numeration of triads see Table I�, are drawn by thin
lines. The PP reduction of this cluster to three triads �7, �8, and
�7.1 �according to the notation in Table I� and one AP butterfly is
shown by dashed lines. The rest of notations as in Fig. 1.

L’VOV et al. PHYSICAL REVIEW E 80, 066319 �2009�

066319-10



three individual triads, respectively. The cluster in Fig. 7 is
PP reduced into three triads and PA butterfly, while extended
caterpillar in Fig. 5 is PP reduced into three triads, PA, AA
butterfly, and AAA star. One can see that the 14-triad cluster,
shown in Fig. 9�A� can be PP-reduced into eight triads and
six-triad cluster. The 16-triad cluster �Fig. 9�B�� can be PP
reduced into five triads, AA and PA butterfly, AAP star, and
four-triad cluster, consisting of an AAA star with one AP-
connected triad. Note that the concept of PP-reducible cluster
is different from a disconnected cluster. While a PP connec-
tion is reluctant to transfer energy from a highly excited sub-
cluster to a lowly excited one, it can still redistribute energy
between similarly excited subclusters. A disconnected cluster
is clearly unable to do that.

In the spectral domain � , 	m	1000 the largest PP irre-
ducible subcluster belonging to the monster consists of 130
triads and is shown in Fig. 10. The statistics of PP-
irreducible subclusters are presented in Fig. 6�B�.

We learn from this analysis that many clusters cannot
carry energy flux through PP connections; their dynamics is
naturally reduced to the dynamics of PP-irreducible subclus-
ters. Therefore it is sufficient to study carefully the dynamics
of these PP-irreducible clusters to understand the properties
of any cluster.

V. NUMERICAL ANALYSIS OF FREE EVOLUTION OF
TYPICAL SUB-CLUSTERS

Our goal is to describe the energy flux through resonant
triads in the regime of finite-dimensional wave turbulence. In
the first Sec. V B we consider free evolution of the smallest
clusters—butterflies—from asymmetrical initial conditions,
in which only one triad is excited to high amplitudes, ex-
ceeding by orders of magnitudes the initial amplitudes in the
other triad. The questions are how the energy flux from the
energetic “leading” triad depends on the type of connection,
on the ratios of the interaction coefficients etc. Sec. V C is
devoted to the free evolution of the triple-triad clusters: stars
and chains from initial conditions in which only the leading
a triad is substantially excited, the levels of excitation of the
two other triads are much smaller. All these examples, and
PA-PA-..PA chains, studied in the next section, can serve as
building blocks of bigger clusters and the knowledge about
the energy flux through them allows to qualitatively predict
efficiency of the energy transfer through bigger clusters.

A. Methodology and numerical procedure

The equations of motion for all clusters were prepared for
numerical analysis using a specially designed algorithm that
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FIG. 8. �Color online� Examples of PP reduction of pair connection, panel A and of triple connection, panel B. Common �PP- and PPP-�
modes are split stressing the difficulty of energy exchange between the corresponding triads. Dashed lines separate PP irreducible subclus-
ters, discussed in Sec. IV B. The rest of the notations are as in Fig. 1.

(b)(a)

FIG. 9. �Color online� Large PP-reducible clusters. Common PP
and PPP modes are shown by empty circles. The rest of modes are
denoted by full �blue� circles. As in previous figures, outgoing �red�
arrows indicate A modes.

FIG. 10. �Color online� Largest PP-irreducible cluster in the
spectral domain � , 	m	1000.
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allowed an automatic implementation for any cluster, given
the number of triads and the connectivity table. This served
to avoid human errors in implementing large sets of equa-
tions.

The equations of motion for the free evolution of butter-
flies and triple clusters are stiff and were integrated using a
multistep adaptive method based on numerical differentiation
formulas �27�.

For each system of equations the accuracy of integration
was controlled by testing the conservation of the relevant
integrals of motion. The integration parameters were ad-
justed to keep the standard deviation ��I� below a given
threshold for the duration of the numerical runs. Since the
main parameter that affects the accuracy in terms of the con-
servation of the integrals of motion is the maximal allowed
time step, the preliminary calculations were carried out with
a requirement ��I�10−5; actually in most cases ��I�
10−8 was achieved.

The evolution starting from several hundred initial condi-
tions was analyzed and several representative conditions
were chosen for the study of energy transfer in the clusters.
All the conclusions regarding the discovered dependencies
were verified by control calculations with stricter accuracy
requirements.

The equation of motion for forced chain clusters, studied
in the next Sec. VI, were integrated by both adaptive meth-
ods �27� and by fourth-order constant time-step Runge-Kutta
for better control of accuracy. By construction of the model,
these equations required accurate description of the last triad
in the cluster to ensure proper energy dissipation. The inte-
gration parameters were adjusted to reproduce this fastest
evolution, and therefore were automatically suitable for all
other triads. We verified the convergence of the resulting
statistics with respect to all relevant parameters.

B. Free evolution in butterflies

The simplest topology that allows consideration of the
energy flux between resonant triads is the double-triad
clusters—butterflies.

1. Initial conditions, choice of the interaction coefficients and
data representation

In this Subsection we show that details of the time evolu-
tion in butterflies are very sensitive to the initial conditions,
which define the values of the dynamical invariants. There-
fore a reasonable choice of initial conditions, allowing to
shed light on a “typical” time evolution in a relatively com-
pact form is not obvious. At initial time t=0 we assign most
of the energy to two individual �not common� modes of one
�leading� triad, denoted below for concreteness as a triad.
The initial amplitudes of these two modes we denote as B0

and B̃0 �Fig. 2�. To study the influence of the energy distri-
bution between these modes we will use two types of initial
conditions,

Type I: B0 = 3.9 + 0.50i, B̃0 = 3.7 + 0.93i , �34a�

Type II: B0 = 5.3 + 0.50i, B̃0 = 0.9 + 0.93i . �34b�

Both distributions �34� are complex and normalized such that

	B0	2+ 	B̃0	2�30. The difference between Eqs. �34a� and
�34b� is that in Eq. �34a� both amplitudes are similar, while
in Eq. �34b� they are quite different.

For different butterflies we choose in the leading triad,

PP-butterfly with B1	a�0� = B1	b�0�: �35a�

B2	a�0� = B̃0, B3	a�0� = B0;

AA-butterfly with B3	a = B3	b: �35b�

B1	a�0� = B0, B2	a�0� = B̃0;

PA-butterfly with B1	a = B3	b: �35c�

B2	a�0� = B̃0, B3	a�0� = B0,

as it is shown in Fig. 2.
The initial conditions in the driven b triad we choose the

same for all types of butterflies. They have much smaller
initial amplitudes, for example

�B1	b�0� = B1,0, B1,0 � C�0.05 + 0.02i� ,

B2	b�0� = B2,0, B2,0 � C�0.02 + 0.05i� ,

B3	b�0� = B3,0, B3,0 � C�0.10 − 0.02i� .
� �36�

To study the dependence of the energy flow between triads
on the initial level of excitation of the driven triad we vary
the energy content in the driven triad changing the coeffi-
cient C in Eq. �36�, taking in addition to C=1 also C=0.1
and C=0.01. In all the further simulations C=1 if else is not
mentioned.

In this way the initial conditions for all butterflies are as
similar as possible and we can study the difference in time
evolutions, caused by different types of connections.

Last but not least are the interaction coefficients. For con-
creteness we chose interaction coefficients corresponding to
�14 and �16 �Z14�75, and Z16�15� as prototypes and use
either �Za=75, Zb=15� or vise versa and sometimes �Za
=Zb=15�. Since the change in the interaction coefficient
renormalizes the corresponding time scale, only their ratio is
important for the dynamics. In our case these ratios are =5,
1/5 or 1; this allows us to study the butterfly dynamics with
very different values of the interaction amplitudes, which is
typically the case. Having in mind that special choices of the
ratios of interaction coefficients may lead to integrability of
clusters of resonant triads �28� �and see also �29�� we verified
that small variations of these ratios does not changed our
conclusions concerning energy transfer in clusters.

Recall that any butterfly has three quadratic integrals of
motion, that involve only squares of five amplitudes of
modes and therefore only two combinations of them are in-
dependent. For the presentation we chose such combinations
that are orthogonal to the corresponding invariants. Namely,
for PP butterflies, connected via B1	a=B1	b modes,
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J2,3	a � 	B2	a	2 − 	B3	a	2, J2,3	b � 	B2	b	2 − 	B3	b	2;

�37a�

for AA butterflies, connected via B3	a=B3	b modes,

J1,2	a � 	B1	a	2 + 	B2	a	2, J1,2	b � 	B1	a	2 + 	B2	b	2,

�37b�

and for AP-butterflies, connected via B1	a=B3	b modes, J2,3	a
and J1,2	b.

Time evolutions for these three types of butterflies with
various initial conditions and choices of the ratio Za /Zb �5 or
1/5� are shown in Figs. 11–15. Following Sec. V B 3 is de-
voted to discussion of these numerical results.

2. Effect of the type of connections and of the ratio Za ÕZb

�a� PP butterfly has the most trivial time evolution, see
Fig. 11 for Za=75, Zb=15, �panel A� and Za=15, Zb=75,
�panel B�. As expected, there is practically no energy ex-
change between triads: amplitudes J2,3	a ,J2,3	b, defined by
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FIG. 11. �Color online� Time evolution of PP, PA, and AA butterflies with Za=75, Zb=15, left panels and Za=15, Zb=75, right panels.
Initial conditions are given by Eqs. �34a�, �35�, and �36�. In Figs. 11–16 time is measured in arbitrary units
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Eq. �37a�, oscillate within the domains, that are determined
by initial conditions. We show these evolutions just to illus-
trate our analytical result that PP connection is nonpenetra-
tive for energy in both directions at any time.

�b� AA butterfly is a promising candidate for the energy
transfer. Time evolutions of J1,2	a�t� and J1,2	a�t� for AA but-
terfly �defined by Eqs. �37b�� are shown in Figs. 11�E� and
11�F�. Indeed, as one sees in panel F the peaks of the ampli-
tudes J1,2	a�t� in the leading triad and J1,2	b�t� in the driven
triad are close to 30 for Za=15, Zb=75. Quite unexpectedly,
the energy transfer may be not efficient even with AA con-
nections. Indeed, as one sees in Fig. 11�E�, when the leading
a triad has larger Za=75, the sum 	B1	2+ 	B2	2 in the leading
triad oscillates between �30 and �20 being close to its ini-
tial value �30. At the same time, this sum in the driven triad
oscillates close to its initial value �0.01. Therefore the en-
ergy transfer is strongly suppressed if Za�Zb.

To understand the difference between these two cases,
consider time dependence of the common mode B3�t�, for the
case Za=15, Zb=75 shown in Fig. 12�A�. One sees fast os-

cillations of the common mode B3�t� with �almost� zero
mean and some frequency �a that can be estimated as ZaBa,
where Ba��J1,2	a is a characteristic value of mode magni-
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FIG. 12. �Color online� Time evolution of the common mode Re B3	a�t� and Im B3	a�t�, panel A, and the parametric representation
Re B3	a�t� vs Im B3	a�t�, panel B, for AA butterfly with Za=15, Zb=75 and the same initial conditions �34b�, �35b�, and �36� as in Fig. 11.
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tudes in a triad. An illustration of this estimate one sees in
Fig. 11�E�, where �for the same value of 	Ba	� the oscillation
frequency of the triads with Za�75 is much higher than that
for triads with Za�15. As one can see from the equations of
motion �25� for butterflies, the mean energy flux from the
leading, a, to the driven b triad �with A connection�, �a→b,
can be written as

�a→b = 2Zb Re�B1	bB2	bB3	b
� � 	 cos �b, �38�

where �b=�1	b+�2	b−�3	b is the triad phase, introduces by
Eq. �21b�. Fast oscillations of Ba�t�, equivalent to fast growth
of �3	b�t� with the speed d�3	a�t� /dt=d�3	b�t� /dt��a�t�,
lead to self-averaging of cos �b almost to zero, if phases �1	b
and �2	b cannot react fast enough to variations of �3	b�t�. This
is a qualitative explanation of the observed fact that the en-
ergy flux from a to b triad is strongly suppressed if Za�Zb
and is observable �but still suppressed� if Za�Zb. One can
hope that the a−b energy flux can be significant if B3	a�t� has
a nonzero mean and therefore ��3	b�t�� also does not vanish.
But this is impossible under the initial conditions of interest:
we do not want to put initially energy to b triad, taking large
value of B3	a�t�=B3	b�t� at time zero. Therefore at t=0
	B3	a	� 	B1	a	 , 	B2	a	. If so, according to the equation of mo-

tion, the time derivative Ḃ3	a=−ZaB1	aB2	a is large enough to

allow B3	a to cross quickly zero and to reach significant value
with different sign. Having in mind periodical character of
evolution of isolated triad it practically means that �B3	a�
���	B3	a	2�.

�c� PA and AP butterflies. Considering free evolution from
asymmetrical initial conditions we will distinguish PA butter-
fly, in which the leading triad has P connection and the
driven triad has A connection, from AP butterfly, in which
the leading triad has A connection and the driven triad has P
connection.

We found that in AP butterflies the energy transfer to the
driven triad is blocked by the second of the conservation
laws �27b� and its evolution is similar to that of PP butterfly.

On the contrary, PA butterflies demonstrate time evolution
similar to that of AA-butterflies: compare in Fig. 11 panels C
and D for PA butterfly with panels E and F for AA butterflies.
One sees that corresponding plots in both panels are quanti-
tatively the same: in the left panels �with Za=75, Zb=15�
the energy transfer is strongly suppressed �with J�0.01 in
the driven triad�, while in the right panels �with Za
=15, Zb=75� the energy transfer is efficient �with J
�10–30 in the driven triad�.

To complete discussion on how the energy transfer de-
pend on the ratio Za /Zb we present in Fig. 13 time evolution
from the same as in Fig. 11 initial conditions, but with equal
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values of the interaction coefficients, taking for concreteness
Za=Zb=15. The excitation level of the driven triad J1,2	b
�0.2. As expected, this level is larger than �0.01 for
Za /Zb=5 and smaller than �20 for Za /Zb=1 /5.

3. Effect of initial conditions

As we mentioned, the time evolution and efficiency of the
energy transfer between triads crucially depend on the initial
conditions. To demonstrate this we present in Fig. 14 the
evolution of PA butterflies �panel A� and AA butterflies
�panel B� for the same “efficient” values of the interaction
coefficients �Za=15, Zb=75�, as in Figs. 11�D�–11�F�. The
only difference is in initial conditions, that on the first glance
are very similar to that used above in Fig. 11. Namely, for PA
butterflies we simply interchange initial amplitudes of indi-

vidual modes in the leading a triad, replacing B0⇔ B̃0 in Eq.
�35c�. For AA butterflies we replace almost equal values of

B0 and B̃0 in Eq. �34a� by different in an order of magnitude

values �Eq. �34b�� with the same sum 	B0	2+ 	B̃0	2�30. The
result of this “minor” change is crucial: in PA-butterfly the
excitation level J1,2	b decreases from �20 to �0.4 and in AA
butterfly from �20 to �0.1.

In order to rationalize this effect notice that the energy
flux from the a to b triad is proportional to the level of
excitation of the common mode, �	B3	b	2� for both butterflies
under consideration. To estimate the upper bound for �	B3	b	2�
we can approximate a triad as an isolated one, neglecting the
feedback effect of the driven triad on the leading one. In this
approximation we can use the invariants �Eq. �19�� for iso-
lated triad,

I1,3	a = 	B1	a	2 + 	B3	a	2, I2,3	a = 	B2	a	2 + 	B3	a	2. �39�

�a� AA butterfly. In AA butterfly initially the amplitude
	B3	a	� 	B1	a	 , 	B2	a	. Therefore I1,3	a= 	B1	a�t=0�	2�	B1	a

�0�	2 and
I2,3	a= 	B2	a

�0�	2 and thus

�	B3	a	2  	B1	a
�0�	2

	B3	a	2  	B2	a
�0�	2�⇒ 	B3	a	2  min�	B1	a

�0�	2, 	B2	a
�0�	2� .

�40�

This means that the efficiency of the energy transfer is de-
termined by the smallest initial magnitudes of the individual
modes; fixing sum of their squares one has the most efficient
transfer at �almost� equal initial magnitudes. This was real-
ized in the first version of the initial conditions �34a�, that
leads to the best energy transfer, in which, according to Fig.
11�F� max J1,2	b�30.

Let us show, that this is indeed the maximal possible
value of the level of excitation of the driven triad J1,2	b. To
this goal consider the invariants �Eq. �27c�� of AA butterfly,
that can be combined as follows:

IAA = 	B1	a	2 + 	B2	a	2 + 2	B3	a	2 + 	B1	b	2 + 	B2	b	2. �41a�

At t=0 B1	a=B0, B2	a= B̃0 �or vise versa� and much larger
than the rest of the amplitudes. Therefore IAA=B1	a 	2

+ 	B2	a	2=J1,2	a= 	B0	2+ 	B̃0	2 and thus

J1,2	b � 	B1	b	2 + 	B2	b	2  IAA � 30, AA. �41b�

Finally notice, that in view of the restriction �40� it is clear,
that with the second choice of the initial conditions �34b� the
energy transfer should be much less efficient. This is exactly
what one sees in Fig. 14�B�.

�b� PA butterfly. The situation is a bit different for PA
butterfly with P and A modes being individual in the leading
a-triad. In this case combining invariants �Eq. �27b�� for PA
butterfly one finds new �dependent� invariants,

IPA = 	B3	a	2 − 	B2	a	2 + 2	B3	b	2 + 	B1	b	2 + 	B2	b	2 = J3,2	a + J1,2	b

+ 2	B3	b	2. �42a�

At t=0, B2	a= B̃0, B3	a=B0 �or vise versa� and much larger
than the rest of the amplitudes. Therefore IPA=J2,3	a�0� which

is equal to −�	B0	2− 	B̃0	2� for the old initial conditions and to

IPA= 	B0	2− 	B̃0	2 for the new ones. This allows one to write:

IPA = J2,3	a�0� � � 26.7, PA. �42b�

Unfortunately, in this case invariant IPA is not positive defi-
nite and therefore one cannot get rigorous restriction on
J1,2	b, similar to Eq. �41b�. Nevertheless, more detailed
analysis allows us to think that the upper bound for J1,2	b for
PA butterfly should be the same as for AA butterfly, i.e.,
about 30 for our initial conditions.

In order to clarify the dependence of the energy transfer
on initial conditions we should estimate the amplitude of
common mode similarly to the case of AA butterfly, neglect-
ing the excitation of the driven triad. In this case invariants
�Eq. �27b�� can be written as

I1,3	a = 	B1	a	2 + 	B3	a	2, I1,2	a = 	B1	a	2 − 	B2	a	2. �43�

At initial moment of time the amplitude 	B1	a	� 	B2	a	 , 	B3	a	.
Therefore I1,3	a�	B3	a�t=0�	2�	B3	a

�0�	2 and I3,2	a= 	B3	a
�0�	2

− 	B2	a
�0�	2. Thus the first of Eqs. �43� gives

	B1	a	2 = 	B3	b	2  	B3	a
�0�	2, �44�

while the second one leads to the trivial restriction 	B1	a	2�
−	B3	a

�0�	2, that is satisfied automatically. The conclusion is that
the efficiency of the energy transfer is determined by the
initial magnitudes of the individual A mode. This was real-
ized in the first version of the initial conditions in which we
assigned more energy to B3	a mode; that leads to the best
energy transfer.

The next question is how to rationalize why the energy
transfer into the driven triad can exceed 50%. Intuitively the
answer is rather obvious: we understood already that the en-
ergy transfer is much more effective, if the accepting triad
has larger interaction coefficient Z. Therefore in the consid-
ered case, when Zb�Za, during long evolution with various
values of the triad phase �that determines the direction of the
energy flux� and with similar value of the triad excitations,
the energy flux from a to b triad is more favorable than the
flux in the opposite direction. This leads to the asymmetry of
the mean energy content between triads in favor of the b
triad with larger value of the interaction coefficient: Zb�Za.

�c� What depends on the excitation level of the driven
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triad? Up to now we have considered initial conditions in the
leading triad, just by mentioning that the driven triads have
much smaller values of the initial excitations. The reason for
this neglect is that the time evolution is insensitive to the
initial excitations in the driven triads, their level just have to
be very small. To demonstrate this we compare the time evo-
lution of AA triad with Za=15, Zb=75 from the initial con-
ditions �34a� and �35b� and with “standard” level of initial
excitation in b triad �C=1 in Eqs. �36�� with that for the
much smaller initial energy contents in the driven triad, see
Fig. 15. The long-time evolution is practically independent
of C as shown in Fig. 15�A�. The C dependence is visible
only on the initial stages of the evolution: panel B with C
=1, C with C=0.1, and D with C=0.01. One sees that the
position of the first maximum for C=1 is at tmax�0.03, for
C=0.1 at tmax�0.04, while for C=0.01 at tmax�0.05. This
dependence is quite understandable: according to Eqs. �25b�
initial small perturbations in the driven triad grow exponen-
tially in time due to the parametric instability of the common
B3	b mode with respect of decay into small individual modes:
B1	b ,B2	b	exp�Zb	B3	b	t� modes. Therefore

tmax 	 − ln ZbC , �45�

as observed.

C. Energy-junctions in the triple-triad clusters

In this Subsection we study free evolution of the triple-
triad clusters, that allow to shed light on the energy transfer
from one triad to two other triads. To this aim we consider
here free evolution of various triple-triad clusters, in which
the leading a-triad will be initially highly exited, while the
level of excitation of two other b and c triads will be rela-
tively small. One topological option for effective energy flux
from a to b and c triad, considered in Sec. V C 1 is PAA star.
One more option is the triple-triangle configuration, in which
energy goes from one triad to two other, PP-connected triads.
This structure is very rare and will not be discussed here.
Next option, considered in Sec. V C 2, is AP-PA chain with
the leading a triad in the middle.

1. Triple-star junction

An effective component in the energy transfer through big
clusters is the PAA star. PAA star can accept energy via
A-mode of a-triad and transfer it to two other b and c triads,
via their A modes, B3	b and B3	c, connected to the �same�
passive B1	a mode of the a-triad �see Fig. 18�A��. In order to
clarify how an additional c-triad affects the energy in PA-
butterfly studied above, we present in Fig. 16 an evolution of
PAA star with the choice of the interaction coefficients simi-
lar to that of above and with “energy-transfer effective” ini-
tial conditions, given by Eq. �35c� in a triad, Eq. �36� in b
triad. For c triad we took initial conditions similar to that for
b triad Eq. �36�, but with the complex conjugated B1,0 and
B2,0. Hence, the initial conditions are as follows:

�B1	a�0� = B3	b�0� = B3	c�0� = B3,0,

B2	a�0� = B̃0, B3	a�0� = B0;
� �46a�

B1	b�0� = B1,0, B2	b�0� = B2,0; �46b�

B1	c�0� = B1,0
� , B2	c�0� = B2,0

� . �46c�

Quite expectedly, when the leading triad has much smaller
interaction coefficient than the driven ones �see Fig. 16�A�
with Za�Zb=Zc=75�, the energy transfer to both driven tri-
ads is fully effective. The new element with respect to the
butterfly case is the energy oscillation between driven triads.

Panel B in Fig. 16 demonstrates an evolution of the PAA-
star, in which driven c triad has the interaction coefficient
Zc=3, i.e., five times smaller than in the leading triad. As
expected, the energy transfer to very slow c triad is strongly
suppressed, below the level J1,2	c�1.

The same level of excitation, J1,2	b�J1,2	c�1 demon-
strates the PAA star with all equal interaction coefficients,
see Fig. 16�C�. The energy alternations between equivalent
triads is even more pronounced, than in case Za�Zb=Zc
=15, that demonstrates a more stochastic behavior.

The comparison of Figs. 16�B� and 16�D� shows that the
decrease in Zb �from 75 to 15� suppresses energy transfer to
the c triad even further up to level 0.015�1.

The overall conclusion is that qualitatively the difference
in the interaction coefficients affects the energy transfer in
triple stars similarly to that in butterflies, but on the quanti-
tative level the interplay of two driven triads cannot be ne-
glected.

Another expected conclusion is that the triple clusters
demonstrate “more random” evolution than butterflies. How-
ever, the level of randomness strongly depends on the initial
conditions. One sees this from three-dimensional parametric
representation of PAA-star trajectories in Fig. 17 with differ-
ent choice of the interaction coefficients in the upper and
lower panels. Left panels shows randomization of trajecto-
ries, starting from complex initial conditions �46�, right
panels—much more regular behavior of the trajectories,
starting from similar, but real initial conditions �in which
complex number in Eq. �46� are replaced by their absolute
values�. The qualitative explanations of this difference is
very simple. Equations of motion for triple stars �Eq. �29��
are real. Therefore the mode amplitudes B. . ., that start from
the real initial conditions, remain real during the evolution
and the dimensionality of the phase space in that case is
smaller than that during evolution from general �complex�
initial conditions. Note also that the real trajectories, al-
though close to periodical ones, have small random compo-
nents that lead to the finite “width” of the attractors in Eq.
�46�, right panels.

2. AP-PA-chain energy junction

Another example of an effective energy junction is the
triple AP-PA chains, in which energy can be accepted via A
mode of the middle a triad and transferred to other two b and
c triads via their A modes, B3	b and B3	c, connected to differ-
ent P modes of the a triad from the left and the right: B3	b
=B1	a and B3	c=B2	a �see Fig. 18�B��. A choice of the initial
conditions that guarantees efficiency of the energy transfer is
similar to Eqs. �46� with the differences that are dictated by
different types of the connections,
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�B1	a�0� = B3	b�0� = B3,0,

B2	a�0� = B3	c�0� = B3,0
� , B3	a�0� = B0;� �47a�

B1	b�0� = B1,0, B2	b�0� = B2,0; �47b�

B1	c�0� = B1,0
� , B2	c�0� = B2,0

� . �47c�

In Fig. 19 we show the time evolution of the triple AP-PA
chain with the same four sets of the interaction coefficients,
as in Fig. 16 for APP stars.

Comparing Fig. 19 with Fig. 16 panel by panel one con-
cludes, that the triple AP-PA chain, in which the driven triads
are connected to different modes of the leading triad, dem-
onstrates much more efficient energy transfer, than the triple
PAA star, in which the driven triads are connected to the
same mode of the leading triad. Another difference, is that
the time evolution in the triple AP-PA chain is much more
intermittent than in the triple PAA star.

VI. FINITE-DIMENSIONAL WAVE TURBULENCE IN THE
LONG-CHAIN CLUSTERS

In this section we study stationary energy distributions of
resonant waves and energy exchange between triads in the

long-chain clusters in the regime of finite-dimensional wave
turbulence with constant energy flux and during free evolu-
tion.

A. Pumping and damping in chain clusters

With this subsection we begin to consider the stationary
dynamics of the N-chain clusters, consisting of many reso-
nant triads �with N=12, 16, 20, and 24�. To do this numeri-
cally one should model the energy pumping in the leading a
triad and energy dissipation in the driven Nth triad.

The simplest and reasonable way to model the energy
dissipation is quite obvious: one should introduce linear
damping terms into the equations of motion for individual
modes of the last driven triad. In our case these are P modes
and instead of Eqs. �25c� we suggest the following two equa-
tions for them:

�Ḃ1	N = ZNB2	N
� B3	N − �1	NB1	N,

Ḃ2	N = ZNB1	N
� B3	N − �2	NB2	N,

� �48�

with some phenomenological damping frequencies �1	N and
�2	N that should be compared with the characteristic interac-
tion frequency in these equations
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�int	N � ZN��	B3	N	2� . �49�

Then one can distinguish the cases of symmetrical damping:
�1	N=�2	N, asymmetrical damping: �1	N��2	N, but �1	N
��2	N and strong damping asymmetry: �1	N��2	N. In addi-
tion there are cases of weak damping, when ��1	N�2	N
��int	N, intermediate and strong damping, when ��1	N�2	N
��int	N and ��1	N�2	N��int	N. To start with in this paper we
will restrict ourselves by the simplest case of weak sym-
metrical damping.

In all cases we will include energy pumping term P3	1 in
the equation of motion for the A mode of the first �leading�

triad, i.e., in the equation for B3	a. Now it reads:

Ḃ3	1 = − Z1B1	1B2	a + P3	1. �50�

How to mimic energy pumping is a much more delicate
question. Notice, that in the problems of developed wave or
hydrodynamic turbulence researches usually fill free to
model the energy source and sink in the simplest possible
manner �30�. For example, one introduces a random force
with Gaussian statistics �that has some justification� and �
correlated in time, which is usually far from reality, see, e.g.,
�31�. The rationale is that for very high levels of turbulence
excitation the inertial interval of scales is large enough such
that one expects universal statistics of turbulence, indepen-
dent of characteristics of the energy pumping �30�. In our
case of relatively low level of excitation, when the number of
excited degrees of freedom is not so huge, the universality is,
generally speaking, questionable: statistics of the system dy-
namics can depend on the way the system is excited. One
can imagine few very different versions of the pumping term.

The first version mimics an instability of the B3	1 mode
with an inverse growth time ��3	1�,
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P3	1 = �3	1B3	1, �51a�

Next one can consider a periodic driving force,

P3	1 = F� cos��t� , �51b�

that can mimic the effect of an “external” triad, connected to
B3	1 mode. In this case � is the leading frequency of energy
exchange between modes of the external triad.

Also one can take a random white Gaussian noise

P3	1 = f�t�, �f�t�f�t��� = f2��t − t�� , �51c�

that mimics the influence of numerous nonresonant triads.
In this paper we will utilize a bit more realistic driving

force P3	a�t� �periodic, but not 	cos��t�, as in Eq. �51b�� that
is produced by the equations of motion for an isolated triad.
This mimics the effect of an “external” triad, connected to
B3	a mode in the approximation, when the feedback effect is
neglected.

B. Condition of stationarity

Consider first the dynamical invariants for isolated N
chain clusters �without pumping and damping terms�. Com-

bining invariants �Eq. �19��, one has in this case a �depen-
dent� invariant for isolated triad in the form

I	1 = 	B3	1	2 +
1

2
�	B1	1	2 + 	B2	1	2� . �52a�

Similarly, a combination of invariants �Eq. �27b�� yields the
invariant for PA butterfly,

I	1,2 = 	B3	1	2 + 	B3	2	2 +
1

2
�	B1	2	2 + 	B2	2	2� . �52b�

And finally, from invariants �Eq. �31c�� one derives new �de-
pendent� invariant for PA-PA chain,

I	1,2,3 = 	B3	1	2 + 	B3	2	2 + 	B3	3	2 +
1

2
�	B1	3	2 + 	B2	3	2� .

�52c�

Similarly, for isolated N-chain cluster one gets

I	1,2,. . .N = �
j=1

N

	B3	j	2 +
1

2
�	B1	N	2 + 	B2	N	2� . �52d�
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All these invariants include B3	1 mode, affected by the
pumping, and 1

2 �	B1	N	2+ 	B2	N	2� terms, affected by the damp-
ing. Therefore under the stationary conditions the following
equality must hold,

�P3	1B3	1
� � =

1

2
��1	N�	B1	N	2� + �2	N�	B2	N	2�� . �53a�

In particular for the pumping �51a� one has a simple relation-
ship,

�3	1�	B3	1	2� =
1

2
��1	N�	B1	N	2� + �2	N�	B2	N	2�� . �53b�

Equations �53� can be considered as the �necessary� condi-
tion of the energy balance: the left-hand side describes the
energy pumping, while the right-hand side—the energy
damping. Each of these quantities can be equated �under the
stationary conditions� to the energy flux through the clusters.

C. Universality of statistics of finite-dimensional wave
turbulence in the long-chain clusters

1. Modeling the parameters of the forced chain clusters

We present here our choice of the modeling parameters
for the forced PA-PA-…-PA chain clusters. This choice is
motivated by a self-similar cascade model in hydrodynamics
and weak-wave turbulence, in order to compare the present
situation with those well studied scale-invariant models. The
cluster consists of N triads and is constructed by connecting
the first P mode of �n−1�’s triad, B1	n−1, with the A mode of
the next, n’s triad, B3	n. The interaction coefficients Zn were
chosen in geometric progression,

Zn = �Zn−1 = Z1�n−1. �54�

The chain is forced by an independent freely evolving triad
with Z0=0.125 related to Z1 as Z1=Z0�. The amplitude B1	0
of the forcing triad is added to the equation of B3	1 of the first
triad in the chain 200 times during the period Tf of the forc-
ing triad. We made special efforts to ensure the exact peri-
odicity of the forcing.

The linear dissipation with the damping frequency � was
added to the equations of two P-modes of the last triad, B1	N
and B2	N. In most calculations �=10−4 was used.

We have studied the mean square amplitudes of “free”
modes, �	B2	n	2� and “connected” modes �	B3	n	2�= �	B1	n−1	2�
in the chains with different number of triads, N=16,20,24,
for the set of the frequency scaling parameter �
=1,�2,2 ,2�2 and using different initial conditions in the
pumping triad.

We found that initial conditions do not effect the station-
ary statistics in the cluster. For concreteness, for all presented
simulations we chose for the pumping triad

B1	0 = 0.05 + 0.02i , �55�

B2	0 = 0.02 + 0.05i ,

B3	0 = 0.9 − 0.93i; �56�

and for all N triads of the chain

B1	n = 0.05 + 0.02i , �57�

B2	n = 0.02 + 0.05i ,

B3	n = B1	n−1. �58�

The time of the chain evolution required to reach station-
arity varied from about 1000 Tf of the pumping triad for �
=1 to about 50 Tf for �=2�2. For times later than 1000 Tf
we calculated mean values in time, averaging values of
�	Bj	n	2� over 300Tf. In the most fast converging case of �
=2�2 we averaged over 50Tf. In all cases the evolution was
followed for much longer times and we verified that a par-
ticular choice of the averaging interval does not affect re-
sults.

Our results are presented in Fig. 20 as logarithm of
�	B2	n	2� and �	B3	n	2�, normalized by its value in the first triad
vs triad number n normalized by N. To force all lines to start
from the same point and not from 1 /N, we shifted triad num-
bers by 1: n→n−1 for presentation. Such a shift leads to
better collapse of the data.

2. N-, �- and �-independence of the forced-chain statistics

Figure 20�A� presents normalized mean-square ampli-
tudes �	B2	n	2� and �	B3	n	2� for the chain with N=16 and a set
of the scaling parameters �=1,�2,2 and �=2�2. One sees
that the lines for different � are quite close, quickly converg-
ing for larger �. We conclude that the distributions of
�	B2	n	2� and �	B3	n	2� are almost � independent at least for
��2.

Figure 20�B� represents distributions of �	B2	n	2� and
�	B3	n	2� for the chains with �=�2 and different number of
triads: N=12,16,20 and N=24. One sees that the lines for
different N practically coincide. The conclusion is that the
distributions of �	B2	n	2� and �	B3	n	2� are N independent in the
limit of large N.

Panel C in Fig. 20 shows �	B2	n	2� and �	B3	n	2� for the
chains with �=�2, N=16, and different, but small values of
�=10−4 ,5�10−4 ,10−3 ,5�10−3. Collapse of these plots is
obvious. One can ask, what happens if one increases further
the damping parameter? Increasing �, we found that in this
case the individual amplitudes in the last triad become very
small. Its ability to absorb the energy flux from the previous
triad diminishes to the stage at which it cannot anymore
serve as an energy sink. This leads to accumulation of the
energy in the N-1’th triad and later in N-2nd triad etc., thus
creating a “bottleneck effect.”

The reason for this effect is that the energy pumping of
B1	N and B2	N modes is 	Re�B3	N

� B1	NB2	N�, while their energy
damping �in the simple case �1	N=�2,N=�� is proportional to
��	B1	N	2+ 	B2	N	2�. In other words, both fluxes are quadratic
in the amplitudes B1	N and B2	N. It means that for large
enough � the energy damping will be larger than the energy
pumping, whatever the values of B1	N and B2	N are. In this
case these amplitudes will decrease in time exponentially. In
the other case, when � is small enough, the energy damping
will be smaller than the energy pumping and amplitudes B1	N
and B2	N will exponentially grow. In other words, there is a
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critical value of �, above which the last triad is not exited at
all. A more detailed analysis shows, that for �1	N��2,N the
critical parameter is ��1	N�2,N.

3. Forced- vs free-evolution statistics in the chain clusters

One more surprise is that in the conditions of the energy-
flux equilibrium in the scale-invariant situations �in our case,
Zn	�n� we did not observe the expected powerlike behavior,
when �	Bj	n	2�	�n�. Moreover, the ratio �	B2	n	2� / �	B3	n	2� de-
pends on n and the connected modes �	B3	n	2� weakly depend
on n, as one expects in the thermodynamic equilibrium, after
a long free evolution.

That is why we decided to compare forced distributions of
�	B2	n	2� and �	B3	n	2� with the distributions of �	B2	n	2� and
�	B3	n	2� after long free evolutions �without forcing and
damping� in the same cluster. For concreteness we took clus-
ter with �=�2 and N=16 after forced evolution during time
t=1000Tf. To get the values of the forced amplitudes we
averaged over last 500Tf. Then we took final complex am-
plitudes B2	n and B3	n as initial conditions for the free evolu-
tion during another period t=1000Tf, and again averaged
over last 500Tf. Both distributions of �	B2	n	2� and �	B3	n	2�
are presented in the Fig. 20�D�. As one sees these distribu-
tions practicably coincide.

In other words, the distributions with constant energy flux
and the distributions with zero energy flux are almost iden-

tical. To show, why this happens we presented in Fig. 21 the
time evolution of the instant energy flux via nth triad

�n�t� = 2Zn Re�B1	n�t�B2	n�t�B3	n
� �t�� , �59�

normalized by its mean value �̃n���n�t��. One sees enor-
mous fluctuations of �n�t� with peaks, reaching �6000�̃n.
The computed mean value of the flux fluctuation ��n

����n
2�t�� is about 100 times larger than �̃n. This means that

there is a strong energy exchange between triads in the clus-
ter, that essentially exceeds minor mean flux. Therefore one
can switch off the mean energy flux without almost any ef-
fect on the cluster statistics. We think, that this general state-
ment is valid for all kind on clusters, consisting of connected
triads.

The only difference between forced and free long-time
evolution of the clusters is the restriction, that follows from
the conservations laws, that are satisfied exactly in free evo-
lutions and approximately in the forced case.

VII. CONCLUSIONS

A. Main points of understanding in finite-dimensional wave
turbulence

�i� In the first part of the paper we studied the structure of
finite clusters of resonant triads using the example of atmo-
spheric planetary waves and showed that:
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FIG. 20. �Color online� Comparison of the plots of ln�	Bj	n	2� vs n / �N−1� for different �, panel A, for different N, panel B and for
different �, panel C. Panel D compares distributions for the free and forced evolutions.

L’VOV et al. PHYSICAL REVIEW E 80, 066319 �2009�

066319-22



�a� In the physically relevant domain of atmospheric plan-
etary waves �m ,�1000, when the mode-scale is larger than
the height of the Earth atmosphere� we have found and de-
scribed the topology of all the clusters formed by resonantly
interacting planetary modes. The set of clusters contains iso-
lated triads and subsets of 2-, 3-,…, 16, and 3691 connected
triads, with two-, three-,…, nine mode and �maximum� ten-
mode connections;

�b� Analyzing the integrals of motion we suggested a clas-
sification �i� of triad modes into two types—active �A� and
passive �P�, and �ii� of connection types between triads—
AA, AP and PP. We showed explicitly that through the AA
connection the energy can flow in both directions, through
the AP connection only from P connected triad to the A con-
nected one, but not vice versa. The PP connections are al-
most impenetrable for energy in both directions. Therefore
from the viewpoint of the energy transfer, large clusters can
be subdivided into smaller ones �by cutting PP-connections�;

�c� We introduced a notion of PP-irreducible subclusters
that cannot be further divided by cutting PP connections and
studied their statistics for planetary waves in the spectral
domain m ,�1000. There are 3005 triads, 400 PA, and AA
butterflies, 143 triple-triad PP irreducible subclusters, etc.,
and only two 130-triad ones in this domain;

�d� To first approximation, almost all triads in the meteo-
rologically significant domain, Table I, can be considered as
completely or almost separated from the rest of the atmo-
spheric planetary waves and therefore the energy oscillations
between them can really lead to intraseasonal oscillations in
Earth’s atmosphere as suggested in �12�.

�ii� In the second part of the paper we presented a general
analysis of the energy transfer in the PP-irreducible subclus-
ters. Studying free evolution from asymmetrical initial con-
ditions, when almost all the initial energy is localized in one
�leading� triad we showed:

�a� the energy flux through the AA and PA connections are
qualitatively the same and crucially depend on the initial
conditions in the leading triad and on the ratio of the inter-
action coefficients in the leading and driven triads;

�b� the energy flux from the leading to two driven triads in
triple-triad clusters depends on the type of energy-junction
�triple AAA, PAA stars, or PA-AP chain� and on the relations
between three interaction coefficients.

�iii� We also studied forced stationary energy transfer in a
long chain consisting of N PA-connected triads with the in-
teraction coefficients Zn	�n, 1nN, with forcing in the
first triad and damping in the last one. We showed that sta-
tionary energy distributions between triads are universal in
the following sense:

�a� For ��1 the distributions are almost � independent;
For ��2 the distributions practically collapse on each other.

�b� the distributions are practically independent of the
damping parameter � for ���th. For ���th the stationary
state does not exist.
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FIG. 21. �Color online� The time evolution of the normalized flux over triad 12 �A� and over triad 16 �B� during one period of the forcing
triad for �=2 for N=20.

TABLE I. The first three columns provide the following data in
the domain m ,�21: the cluster’s form, the triad numbers and the
modes within a cluster; in the last two—the numbers of additional
connecting triads and their modes that enlarge the corresponding
cluster when the spectral domain 	m	 ,�1000 is regarded.

Clust. N1 Modes �m ,�� N2 Connecting triads

�1 1 �4,12� �5,14� �9,13�
�2 2 �3,14� �1,20� �4,15� 2.1 �4,15� �10,24� �14,20�

2.2 �1,20� �14,29� �15,28�
2.3 �1,20� �15,75� �16,56�

�3 3 �6,18� �7,20� �13,19� 3.1 �2,15� �5,24� �7,20�
�4 4 �1,14� �11,21� �12,20� 4.1 �1,14� �9,27� �10,24�
q5,6 5 �2,6� �3,8� �5,7� 5.1 �4,14� �9,27� �13,20�

6 �2,6� �4,14� �6,9�
7 �6,14� �2,20� �8,15� 7.1 �2,20� �11,44� �13,35�

q7,8 8 �3,6� �6,14� �9,9� 7.2 �2,20� �30,75� �32,56�
7.3 �32,56� �26,114� �58,69�

q9,10 9 �3,10� �5,21� �8,14�
10 �8,11� �5,21� �13,13�
11 �2,14� �17,20� �19,19� 11.1 �2,14� �18,27� �20,24�
12 �1,6� �2,14� �3,9� 11.2 �6,44� �14,21� �20,24�
13 �3,9� �8,20� �11,14� 11.3 �9,35� �11,20� �20,24�

�11–16 14 �1,6� �11,20� �12,15� 11.4 �3,20� �45,75� �48,56�
15 �9,14� �3,20� �12,15�
16 �2,7� �11,20� �13,14�
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�c� Distributions for the forced case and for the free evo-
lution �with the forced state as initial condition� coincide due
to extremely large fluctuations of the energy flux, exceeding
its mean value in orders of magnitude.

�iv� Our analysis of finite-dimensional wave turbulence is
based on the simple form �18� of the basic equations and
does not exploit the explicit form of the interaction coeffi-
cients Z which vary substantially for different wave systems.
This means that our results can be used directly for arbitrary
three-wave resonant systems governed by Eqs. �18�, e.g.,
drift waves, gravity-capillary waves, etc.

B. Remaining unclear issues in finite-dimensional and
mesoscopic regimes of weak wave turbulence

�i� Having in mind the extremely rich variability of the
structure of concrete finite clusters of resonance triads and
the various important aspects of the cluster dynamics and
statistics �some of them were not mentioned at all�, this pa-
per opens more questions than answers. Among them:

�a� What might be the peculiarities of free evolutions of
finite clusters from other initial conditions, more general than
those studied in this paper, especially for particular clusters
which may be important in some applications?

�b� How energy goes through more complicated junctions,
than triple stars, studied in this paper, such as stars with four
and five and more triads, etc.?

�c� How integrability of clusters �with special choice of
the ratios of interaction coefficients and/or initial conditions
�28,29�� or closeness to the integrable cases affect the energy
transfer and the statistics of the mode amplitudes?

�d� What is the dimensionality of the cluster trajectories,
how does it depends on the details of the initial conditions
and/or the ratios of interaction coefficients for various cluster
structure?

�e� How different-mode, different-time correlation func-
tions depend on the mode position in a cluster and on the
time difference between them?

�f� What is the values of the flatness �ratio of the fourth-
order correlation functions to the square of the second-order
ones� and how does it depend on the cluster structure, initial
conditions, etc.?

�g� To what extent can the statistics of the amplitudes of
individual modes be considered close to Gaussian at least for
very large �but finite� clusters?

�h� How does this closeness �if it exists� depend on the
mode position in a cluster and on initial conditions?

�i� If this closeness exists �we believe that it does�, how
can one formulate appropriate closures that will lead to an
analytical statistical description of the finite cluster behavior?

�ii� A few of the most important questions, at least from
the theoretical viewpoint, are:

�a� What is the principal difference between finite size
cluster behavior for three-wave resonances, discussed here,
and that for four-wave resonance systems?

�b� How mode statistics and possible applicability of the
closure procedures changes, if one accounts for small damp-
ing of the mode energy and external random noise, that can
mimic interaction of a cluster with the “rest of the world”?

�c� How all the features of a cluster behavior �both for
those studied and those left open� get modified if one ac-
counts for quasiresonances that can become crucially impor-
tant with increasing the level of the modes excitation?

�d� How to describe the statistical behavior of finite-size
dynamical systems �in the case of three- and four-wave in-
teractions� with further increases in the system size or in the
level of system excitation? How this behavior approaches
�step by step, probably via an intermediate kind of behavior�
the limit of infinite system with quasi-Gaussian statistics,
that can be successfully described with the help of wave-
kinetic equations?

C. Road ahead

Our feeling is that all these �and many similar and differ-
ent, but related� questions are the subject of a new fields in
nonlinear wave physics, finite-dimensional wave turbulence
and mesoscopic wave turbulence. This subject offers very
interesting issues both from the physical and the method-
ological viewpoints, with possible important applications in
numerous physical examples.
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